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ALVINN: Autonomous LLand
Vehicle In a Neural Network

eDean Pomerleau's Ph.D.
thesis (1992).

e How ALVINN Works

. Architecture
. Training Procedure

— Performance

e Why ALVINN Works
. Hidden Unit Analysis

e Integrating Multiple
Networks




ALVINN Network Architecture

30x32 Sensor
Input Retina

DS

How many inputs?
30x32=960

How many weights?
961 X4+5X30=3994
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Original Training Scheme

*Generate artificial road 1mages

mimicing situations the network 1s
- - CELERTTET  —— — ——¥ b
expected to encounter, including B i e ®

tree
Nnoise.
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eCalculate correct steering direction
for each 1mage.

*Train on artificial images, then test
on real roads.

*Problem: realistic training images
are difficult to produce: training 1s
expensive.
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Training on the Fly

*Digitize the steering wheel
position.

*Train the network by having

1t observe live sensor data as a
human drives the vehicle.

*The human “teaches” the
network how to drive.

*Can this really work?

e[t's not so simple...
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Measuring Steering Error

*Train with a Gaussian bump
centered over the desired
steering direction.

*To test: fit a Gaussian to the
network's output vector.

*Measure distance between
Gaussian's peak and human
steering direction.

Activation

Person’s Steering

Network’s Steering
Error = ~3.5 units

Gaussian Peak =

Network Steering
Direction Direction

\\ / Best Fit
/ Gaussian

" 0loo

| 15 30
Output Unit
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Why use a Gaussian for the

output pattern? o




Learning to Correct Steering Errors

o[f the human drives perfectly, the network never learns to
make corrections when it drifts off the desired track.

*Crude solution:
—Turn learning off temporarily, and drive off course.

—Turn learning back on, and let the network observe the = human
making the necessary corrections.

— Repeat.

=

*Relies on the human driver to generate a rich set of steering
errors: time consuming and unreliable.
Can be dangerous if training in traffic.
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Simulating the Steering Errors

[et humans drive as best they can.

eIncrease training set variety
by artificially shifting and

rotating the video images, K
so that the vehicle appears
at different orientations ?l 71 %

relative to the road.
\ N

*Generate 14 random shift/rotations for each image.

*A simple steering model 1s used to predict how a human driver
would react to each transformation.
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Road Shifts I.ead to Missing
Pixels

*Rotating and translating the camera can be simulated
by copying pixels. But what about pixels in the new
field of view that weren't present 1n the original
camera image?
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Filling In Missing Pixels

1. Fill in (A) from closest image
pixel (B).

Original Extrapolation
Scheme

*Problem: smearing.

*The smear becomes an image
“feature” that the network learns
to exploit!

Improved Extrapolation
Scheme

2. Project along a line from (A)

parallel to the vehicle's heading
to find closest pixel (C).
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Estimating Correct Steering Direction

*“Pure pursuit” steering model generates a fairly good
estimate of what the human driver would do.

offset distance

offset angle
lookahead distance .
person's steering radi




Network Weights Evolving

eInitial random weights look
like “salt and pepper” noise.

eDuring training, the hidden
units evolve into a set of
complementary feature
detectors.

den

Hidden

Hidden

Unit 4

Unit 5
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Problem with Online L.earning:
Network Can “Forget”

*The network tends to

overlearn recently encountered

examples and forget how to

drive in situations encountered

earlier 1n training. /

e After a long right turn, the
network will be biased toward
turning right, since recent

training data focused on right \"“;g
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Solution: Maintain a Buffer of Balanced
Training Images
This is a semi-batch learning approach. Keep a buffer of 200 training
images.

Replace 15 old exemplars with new ones derived from the current
camera image. Replacement strategies:

(1) Replace the image with the lowest error

(2) Replace the image with the closest steering direction

New Exemplars: O O [] O O ]

0 S N O .

en8th Buffer:DDDDDDDDDDDDDDDDDDDDDDDDO
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“Training on the Fly” Details

1) Take current camera image plus 14 shifted/rotated variants,
each with computed steering direction.

2) Replace 15 old exemplars in the 200 element training
exemplar buffer with these 15 new ones.

3) Perform one epoch of backpropagation learning on the
training exemplar buffer.

4) Repeat steps 1-3 until the network's predicted steering
direction reliably matches the person's steering direction.

S5)How long does training take?

6) Just a few minutes!
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ALVINN Weight Diagram

*This hidden unit 1s
excited by a road on the

Weights from Video Camera Retina

e[ts projections to the

output layer are voting for - | 'M

a left turn, to bring the
vehicle back to the center
of the road.




ALVINN Weight Diagram

*This hidden unit 1s excited by
roads slightly left OR slightly
right of center.

[t suggests two steering
directions: a shallow left turn
and a shallow right turn.

eIn order to determine which is
correct, the network must
combine outputs from several
active hidden units.
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Weights to Direction Output Units
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Weights from Video Camera Retina

Left Road Right Road

A “distributed representation” allows
a very simple network to drive
accurately.




ALVINN Weight Diagram

*This unit was taken from a

WhOSG Wldth Varied. C .htsfr m Video Camer. gR etina

In this case, the hidden units
focus on detecting just one
road edge.

Road
Non-road

i

*The units vote for a relatively
wide range of steering
directions; their cooperative
activity fine-tunes the steering
direction.
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Multi-Modal Inputs

*ALVINN can avoid obstacles using a laser
rangefinder. It can drive at night using laser
reflectance 1maging.

Regular Laser Laser
. Video Rangefinder Reflectance
l"" 8 o
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Comparison with the
“Traditional Approach”

1) Determine which 1image features are important, e.g., a yellow

stripe down the center of the road.
ALVINN finds the important features itself.

2) Hand-code algorithms to find the important features, e.g.,

edge detection to find yellow lines.
ALVINN constructs its own feature detectors.

3) Hand-code algorithm to determine steering direction based

on feature positions in the image.
ALVINN learns the mapping from feature

ks, detector outputs to steering direction. o
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ALVINN's Shortcomings

*The single-network ALVINN architecture can
only drive on one type of road (unpaved, single-
lane, double-lane, lane-striped, etc.)

eCan't transition from one road type to another.

eCan't follow a route.

eSolution: rule-based multi-network 1ntegration.
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Vehicle
Controls

Hybrid ALVINN Architecture

Arbitrator

Expected
errain
Travel
Direction
Video Video Reflectance Range Range
One Lane || Two Lane One Lane Obstacle FCTlnthr
Network Network Network i}::i:?;e ollowing

Network

(x.y)
position
. s Positioning
System
Video Camera Laser Laser
Image

RangeFinder
Image
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Symbolic Mapping Module

*Provides two kinds of information: (1) current road
type, and (2) estimated steering direction.

Single Lane
Paved Road

Single Lane
Unpaved Road

Multi-Lane
Paved Road

[] Intersection

|||||||||||

© Landmark

L see® Interactive Systems Labs




Map-Based Relevancy Arbitration

*Which module should drive the vehicle?

[f the map says the vehicle is on a two-lane road, the arbitrator
will choose to listen to the two-lane road driving network.

oIf the map says the vehicle is approaching an intersection, the
arbitrator will choose to steer in the direction dictated by the
mapping module in order to follow the correct path to the
destination.

; o
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Obstacle Avoidance Network

Sharp Straight Sharp
Left Ahead Right

e
Es.:s-mg;?;-fg?%%:

Scanning Laser Scanning Laser
s3iis Rangefinder Image Rangefinder Image
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Priority Arbitration

*The obstacle avoidance network 1s trained to steer straight
ahead unless there 1s an obstacle in the way.

*The arbitrator will ignore the obstacle avoidance network
when 1t says “Steer straight ahead,” since the message has low
urgency.

*But when the obstacle avoidance network suggests a sharp
turn, its urgency 1s high, and the arbitrator will give it
precedence over other behaviors.

"
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Problems with Rule-Based Arbitration

*Relevancy and priority arbitration each choose a
single network to listen to. What if we want to
combine results from multiple networks?

1?

Arbitrator

®
o ey, o
: ST . Reflectance
Video : oy e
One Lane e
Network Network
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Video Image Scanning Laser

Reflectance Image



Problems with Rule-Based
Arbitration

*Requires detailed knowledge of each network's areas of
expertise.

*Requires a detailed and accurate map of the environment.

*Assumes precise knowledge of the vehicle's position.

*Would like to be be able to say: “Go about Y4 mile and turn
right at the intersection.”
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Connectionist Arbitration

eEstimate the reliability of all networks in the current situation.

*Use the reliability estimate to:
1) Weight the outputs of the networks.
2) Pinpoint the vehicle's location.
3) Control the vehicle's speed.

4) Determine the need for retraining.

1)But how do you estimate a network's reliability?

‘ o
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Output Appearance Reliability
Estimation (OARE)

* Actual Output Response
Compare actual network output

1.0

= .
with the closest “ideal” output ~ §
- .
pattern. S
<€ -1.0
1 30
9y Output Unit
eCalculate the “output |
appearance error’. Nearest Ideal Output Response
% 1.0
*The larger the appearance error, £ o0
the less reliable i1s the network. &
u".':‘l . 1 30
'&E‘ﬁfﬁ” . Output Unit
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Measuring Output Appearance

Error
Output Appearance Error =), |Actual ;—Ideal ,

/

Steering Error =|curve ,—curve |
where curve ,=human turn curvature
and curve ,=network turn curvature

S ——
steening error
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OARE Predicts Steering Error

(B)

Target Acts Target Acts

A = one lane road (trained)

Output Acts Output Acts
e -

Hidden Rcts Hidden RActs

B = fork in road: output has
bimodal
distribution

C = two land road

Steering Brror

Cormelation Cocfficient = 0,437 U-I.I-p-l.l-ll :‘\-II;;';E.-II;“:IFII;:;: Error
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Fork Detection

*A fork in the road causes a bimodal output pattern,
which has high OARE.

If the map shows we're
approaching a fork, we
can use OARE to detect
when the fork has been
reached.
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Comparative OARE

*Comparing OARE for two networks can tell us when
we have transitioned from one road type to another.

one lane road appearance emor

Appearance Error
P

000 —
o 1 22 30 40

L i .
[~ One Lane Images T Two Lane Images
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Input Reconstruction Reliability
Estimation (IRRE)

*Treat the network as an
auto-encoder: require it to
reconstruct the input.

*Hidden unit “bottleneck™
extracts principal
components of the image.

eImages far from the

«sdraining set will not be
TS .
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Auto-Encoder Fills Gap in Lane

ights Input=HiddenZ Heights

Hiddend=0utput Heights

1t=Hiddend Heights




Difference In Reconstructed ‘
Image

Hiddsern B ddern cts Hidden Acts

Comelation Coefficient = {1.92

0.04 |.25
[
g = (.03 1 Intersection 1 1.00
W g i
22 ;
Input Acts = E U[}l 'I:I..IS
E=
“ ool 0.50
(.00 —10.25

One Lane Read Images -] * -]

Two Lane Read Images

Reconstruction Error
(1-pLRY)

Input

IH.

Difference Difference Difference tlve Systel’nS LabS




Drawbacks to IRRE

eHidden units are forced to learn all the features of the

Input 1mage, not just the ones relevant to the task.
(Di1dn't seem to hurt ALVINN.) Solutions:

N

T Separate set of Dont propagate error from
hiddens for IRRE Interactive Systems IRKRE outputs to hiddens
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Speed Control

If none of the networks appears to be reliable in the
current situation, the system slows the vehicle and
asks for further training.

*Other ways ALVINN controls speed:
e If networks are steering erratically, slow down.

e If networks are steering sharply, slow down.

pud
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I.essons Learned

ne net to solve harder problems, but it will be less

f

exible 1n new situations.

2) Importance of Modularity: by only requiring
individual networks to handle relatively restricted
situations, network training can be made fast and
robust.

at
Sat
e

-%Viability of Hybrid Approach: to achieve high lev

| s'dehavior like route fotlowd freenANNS can (and

1) Preprocessing Tradeoif: more preprocessing allows
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I.essons Learned

4) Analyzability: neural nets are not just black boxes.
We can look at the internal representations and
determine how they work.

5) The techniques developed in ALVINN for robot
driving are also applicable to other forms of vision-
based robot guidance.

The simplicity of adapting ALVINN to new domains
_.underscores the advantage that learning networks hav
‘ q‘E{p\'?er conventional hand-ceded.systems. b
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Self-Mobile Space Manipulator

Flexihility/

&
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SMSM Network Architecture

-1.25 inch +1.25 inch
X Offset Zero X X lefset
} :

- 20 X Output

OQOQOQOQQ e O O™ nits

20 Y Output

Units
5 Hidden
Units
24x20 Video

Input Retina




What the Network Sees

Network’s X Displacement
Response

Network’s Y Displacement
Response

Low Resolution
Video Image
Interacuve dystems Laos

Beam




Learned Weights

Hidden Hidden Hidden Hidden Hidden
Unit 1 Unit 2 Unit 4 Unit 5

*Weights start out
random. Epoch 0

*With even a little ~ **
training, a clear

horizontal or vertical
structure emerges in

Epoch 60

. . Epoch 100
the input to hidden
g&%ﬁl ghtS.
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