Difference between revisions of "Signaly"
From RoboWiki
Line 1: | Line 1: | ||
− | == | + | == Spektrá == |
Line 42: | Line 42: | ||
[[Image:spektrum.m]] | [[Image:spektrum.m]] | ||
+ | |||
+ | == Plávajúci priemer == | ||
+ | |||
+ | % Toto je moj vlastny plavajuci priemer | ||
+ | % | ||
+ | % Verzia 1.0 na prvy pokus 5. 6. 2008 R.B. | ||
+ | % | ||
+ | |||
+ | function y = movingaverage (x, M) | ||
+ | |||
+ | % x je vstupny vektor, ktory filtrujeme | ||
+ | % M je rad filtra, kolko clenov priemerujeme | ||
+ | |||
+ | y=[zeros(1,M-1) x]; % predlzime vektor o M-1 nul na zaciatku | ||
+ | % aby sa aj prva hodnota zaratala do priemeru | ||
+ | for i=1 : length(x) | ||
+ | y(i) = sum( y( i : (i+M-1) ) ); % spocitavame M-tice | ||
+ | endfor | ||
+ | |||
+ | y=y/M; % napokon to vydelime | ||
+ | |||
+ | y=y(1:length(x)); % a vektor zasa skratime o ten | ||
+ | % pridavok, lenze na konci | ||
+ | |||
+ | endfunction | ||
+ | |||
+ | [[Image:movingaverage.m]] | ||
+ | |||
+ | |||
+ | Príklad použitia: | ||
+ | |||
+ | % Priklad na pouzivanie MA filtra: | ||
+ | |||
+ | SignalSinus=sin(linspace(1,6*pi,300)) | ||
+ | |||
+ | |||
+ | % Najprv sa pozrime, ako poskodi MA filter povodny harmonicky | ||
+ | % signal pri roznych velkostiach okienka: | ||
+ | |||
+ | plot(SignalSinus); hold on; | ||
+ | plot(movingaverage(SignalSinus,5)); | ||
+ | plot(movingaverage(SignalSinus,25)); | ||
+ | plot(movingaverage(SignalSinus,100)); | ||
+ | |||
+ | |||
+ | % Teraz uz naozaj ideme filtrovat. Vidno, ze ak jed MA filter | ||
+ | % normalny cisty signal mierne tlmi, tuto sa to neprejavi, pretoze | ||
+ | % sum niektore hodnoty rozhodi aj smerom nahor, aj nadol. Takze | ||
+ | % vyfiltrovany sinus je niekedy aj vacsi ako povodny... | ||
+ | |||
+ | clg; | ||
+ | |||
+ | noise = 0 + 0.1 * randn(size(SignalSinus)); % \mu = 0, \sigma = 0.1 | ||
+ | |||
+ | plot(SignalSinus+noise); hold on; | ||
+ | plot(movingaverage(SignalSinus+noise,10),"r"); | ||
+ | plot(SignalSinus,"g"); | ||
+ | |||
+ | |||
+ | |||
+ | % Teraz ideme filtrovat realne data z teplomera: | ||
+ | |||
+ | clg; | ||
+ | data; % nacita vektor temperature s teplotami: | ||
+ | |||
+ | |||
+ | t1 = movingaverage(temperature(:,2)',10); % skus rozlicne M = 10, 30, 100 | ||
+ | plot(t1); | ||
+ | hold on; | ||
+ | plot(temperature(:,2),"g"); | ||
+ | |||
+ | |||
+ | [[Image:MAexample.m]] |
Revision as of 13:25, 18 June 2008
Spektrá
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % Takto sa kresli spektrum signalu typu Sinus s f 440 Hz. % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % f_sample = 8000; % [Hz] - pre telefony OK duration = 1; % [s] - jedna sekunda freq = 440; % [Hz] - komorne A4 = 440 Hz A = 0.9; % [V] - amplituda signalu z <-1,1> time = 0 : (1/f_sample) : duration; SinusSignal = A * sin( 2*pi*freq*time + 0 ); T_sample = 1/f_sample; N = length(SinusSignal); maxtime = (N-1) * T_sample; % Doba trvania signalu time = (0:N-1) * T_sample; % Casova osa freq = (0:N-1) / maxtime; % Kmitoctova osa % Fourierova analyza: S = fft(SinusSignal); % Vypocet komplexneho spektra Mod = 2/N * abs(S); % Spravne amplitudove spektrum Pha = 180/pi * angle(S); % Fazove spektrum v stupnoch N1 = round(N/2); % Kreslime len relevantu cast po f_sample/2 subplot(2,1,1); plot(freq(1:N1),Mod(1:N1)); % Aplitudova frekvencna charakteristika subplot(2,1,2); plot(freq(1:N1),Pha(1:N1)); % Fazova frekvencna charakteristika
Plávajúci priemer
% Toto je moj vlastny plavajuci priemer % % Verzia 1.0 na prvy pokus 5. 6. 2008 R.B. %
function y = movingaverage (x, M)
% x je vstupny vektor, ktory filtrujeme % M je rad filtra, kolko clenov priemerujeme
y=[zeros(1,M-1) x]; % predlzime vektor o M-1 nul na zaciatku % aby sa aj prva hodnota zaratala do priemeru for i=1 : length(x) y(i) = sum( y( i : (i+M-1) ) ); % spocitavame M-tice endfor y=y/M; % napokon to vydelime
y=y(1:length(x)); % a vektor zasa skratime o ten % pridavok, lenze na konci
endfunction
Príklad použitia:
% Priklad na pouzivanie MA filtra:
SignalSinus=sin(linspace(1,6*pi,300))
% Najprv sa pozrime, ako poskodi MA filter povodny harmonicky % signal pri roznych velkostiach okienka:
plot(SignalSinus); hold on; plot(movingaverage(SignalSinus,5)); plot(movingaverage(SignalSinus,25)); plot(movingaverage(SignalSinus,100));
% Teraz uz naozaj ideme filtrovat. Vidno, ze ak jed MA filter % normalny cisty signal mierne tlmi, tuto sa to neprejavi, pretoze % sum niektore hodnoty rozhodi aj smerom nahor, aj nadol. Takze % vyfiltrovany sinus je niekedy aj vacsi ako povodny...
clg;
noise = 0 + 0.1 * randn(size(SignalSinus)); % \mu = 0, \sigma = 0.1
plot(SignalSinus+noise); hold on; plot(movingaverage(SignalSinus+noise,10),"r"); plot(SignalSinus,"g");
% Teraz ideme filtrovat realne data z teplomera:
clg; data; % nacita vektor temperature s teplotami:
t1 = movingaverage(temperature(:,2)',10); % skus rozlicne M = 10, 30, 100 plot(t1); hold on; plot(temperature(:,2),"g");